Efficient and Wideband Power Amplifiers for Wireless Communications
نویسنده
چکیده
The rapid evolution of wireless communication systems and the development of new standards require that wireless transmitters process several types of standards across multiple bands. Power amplifiers (PAs) are key components in wireless transmitters because they have a big impact on the overall system performance in terms of their bandwidth, efficiency, and linearity. This thesis presents various design techniques that improve bandwidth and efficiency characteristics of the PA. For narrowband transmitters, a circuit design methodology that enables first-pass design of high efficiency single-ended PAs is presented. The method, based on employing bare-die transistors, specialized modeling technique, and optimization of harmonic impedances, is validated with excellent experimental results. A class-F PA at 3.5GHz and a harmonically tuned PA at 5.5GHz are designed and implemented demonstrating 78% and 70% PAE respectively. For broadband transmitters, a design methodology for single-ended PAs with octave bandwidth is presented and verified. The method is based on a harmonic tuning approach combined with a systematic design of broadband matching networks. The demonstrator PA achieves 50-63% PAE across 1.94.3GHz. Then, extending the bandwidth beyond one octave while maintaining high efficiency is investigated by adopting a push-pull configuration. For this reason, a novel push-pull harmonic load-pull measurement setup is proposed and a push-pull PA operating between 1-3GHz is implemented. The investigation demonstrates the proposed setup as an important tool for understanding and optimizing PAs and baluns for wideband push-pull microwave PAs. For multi-band transmitters, using signals with large peak-to-average power ratio, the design of dual-band Doherty PAs (DPAs) is considered. A detailed analysis of each passive structure constituting the DPA is given, leading to different configurations to implement dual-band DPAs. One of the configurations is implemented, leading to state-of-the-art results for dual-band DPAs. Finally, the multi-band branch-line coupler (BLC) is a key component for also extending the design of DPAs to multi-band in the future. A closed form design approach for multi-band BLCs operating at arbitrary frequencies is presented and validated by the successful design of dual-band, triple-band, and quad-band BLCs. The excellent results obtained demonstrate the success of the developed design methodologies for high efficiency and multi-band/wideband PAs. These methods will contribute to the design of future wireless systems with improved performance in terms of efficiency, bandwidth and hence cost.
منابع مشابه
Supply Modulator for Linear Wideband RF Power Amplifiers
This paper deals with the design techniques of power efficient switching regulators intended for linear power amplifiers (PAs) employing envelope tracking techniques in wideband wireless standards. The bottlenecks involve a tradeoff between ripple voltage, slew rate and bandwidth. The slew rate limitation is identified as the main challenge; thus a ‘bang-bang’ slew-enhancement technique is prop...
متن کاملFPGA Implementation of a Hammerstein Based Digital Predistorter for Linearizing RF Power Amplifiers with Memory Effects
Power amplifiers (PAs) are inherently nonlinear elements and digital predistortion is a highly cost-effective approach to linearize them. Although most existing architectures assume that the PA has a memoryless nonlinearity, memory effects of the PAs in many applications ,such as wideband code-division multiple access (WCDMA) or orthogonal frequency-division multiplexing (OFDM), can no longer b...
متن کاملAn Efficient Supply Modulator for Linear Wideband Rf Power Amplifiers
An Efficient Supply Modulator for Linear Wideband RF Power Amplifiers. (August 2011) Richard Turkson, B.Sc., Kwame Nkrumah University of Science and Technology Chair of Advisory Committee: Dr. Jose Silva-Martinez Radio Frequency (RF) Power Amplifiers are responsible for a considerable amount of the power consumption in the entire transmitter-receiver (transceiver) of modern communication system...
متن کاملLattice-based memory polynomial predistorter for wideband radio frequency power amplifiers
This study addresses the ill-conditioning problem of the memory polynomial (MP) model with application to the predistortion of highly non-linear power amplifiers with memory effects. A resource-efficient lattice-based MP structure built using the cascade of a MP generator and a lattice predictor is proposed to overcome the ill-conditioning of the MP’s data matrix. The proposed model performance...
متن کاملAn Improvement Method for Reducing Power Amplifiers Memory Effects Based on Complex Gain Predistortion
Efficient RF power amplifiers used in third generation systems require linearization in order to reduce adjacent channel inter-modulation distortion, without sacrificing efficiency. Digital baseband predistortion is a highly cost-effective way to linearize power amplifiers (PAs), but most existing architectures assume that the PA has a memoryless nonlinearity. For wider bandwidth applications s...
متن کاملA Thesis for the degree of Master Design of Low-Voltage and Low- Power-Consumption Linear Pseudo Differential Transconductance Amplifiers for Ultra-High Frequency Applications
We certify that this work has passed the scholastic standards requested by the Information and Communications University as a thesis for the Abstract The commercialization of Ultra-WideBand (UWB) ranging from 3.1-10.6 GHz by Federal Communication Commission (FCC) has recently emerged as a promising technology for short-range wireless data communications. The applications of wireless data commun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012